Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 57(1): e13524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37357415

RESUMO

Adult stem cells (ASCs) are pluripotent cells with the capacity to self-renew and constantly replace lost cells due to physiological turnover or injury. Understanding the molecular mechanisms of the precise coordination of stem cell proliferation and proper cell fate decision is important to regeneration and organismal homeostasis. The planarian epidermis provides a highly tractable model to study ASC complex dynamic due to the distinct spatiotemporal differentiation stages during lineage development. Here, we identified the myosin regulatory light chain (MRLC) homologue in the Dugesia japonica transcriptome. We found high expression levels of MRLC in wound region during regeneration and also expressed in late epidermal progenitors as an essential regulator of the lineage from neoblasts to mature epidermal cells. We investigated the function of MRLC using in situ hybridization, real-time polymerase chain reaction and double fluorescent and uncovered the potential mechanism. Knockdown of MRLC leads to a remarkable increase in cell death, causes severe abnormalities during regeneration and homeostasis and eventually leads to animal death. The global decrease in epidermal cell in MRLC RNAi animals induces accelerated epidermal proliferation and differentiation. Additionally, we find that MRLC is co-expressed with cdc42 and acts cooperatively to control the epidermal lineage development by affecting cell death. Our results uncover an important role of MRLC, as an inhibitor of apoptosis, involves in epidermal development.


Assuntos
Planárias , Animais , Planárias/metabolismo , Cadeias Leves de Miosina/metabolismo , Homeostase/fisiologia , Diferenciação Celular , Apoptose
2.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834910

RESUMO

As a member of TALE family, Meis1 has been proven to regulate cell proliferation and differentiation during cell fate commitment; however, the mechanism is still not fully understood. The planarian, which has an abundance of stem cells (neoblasts) responsible for regenerating any organ after injury, is an ideal model for studying the mechanisms of tissue identity determination. Here, we characterized a planarian homolog of Meis1 from the planarian Dugesia japonica. Importantly, we found that knockdown of DjMeis1 inhibits the differentiation of neoblasts into eye progenitor cells and results in an eyeless phenotype with normal central nervous system. Furthermore, we observed that DjMeis1 is required for the activation of Wnt signaling pathway by promoting the Djwnt1 expression during posterior regeneration. The silencing of DjMeis1 suppresses the expression of Djwnt1 and results in the inability to reconstruct posterior poles. In general, our findings indicated that DjMeis1 acts as a trigger for the activation of eye and tail regeneration by regulating the differentiation of eye progenitor cells and the formation of posterior poles, respectively.


Assuntos
Planárias , Animais , Planárias/fisiologia , Diferenciação Celular , Células-Tronco/metabolismo , Proliferação de Células , Via de Sinalização Wnt
3.
Cells ; 12(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766815

RESUMO

CK1α (Casein kinase 1α) is a member of the casein kinase 1(CK1) family that is involved in diverse cellular processes, but its functions remain unclear in stem cell development. Freshwater planarians are capable of whole-body regeneration, making it a classic model for the study of regeneration, tissue homeostasis, and polarity in vivo. To investigate the roles of CK1α in regeneration and homeostasis progress, we characterize a homolog of CK1α from planarian Dugesia japonica. We find that Djck1α, which shows an enriched expression pattern in the nascent tissues, is widely expressed especially in the medial regions of planarians. Knockdown of CK1α by RNAi presents a thicker body due to dorsal hyperplasia, along with defects in the medial tissues including nerve proliferation, missing epidermis, intestine disturbance, and hyper-proliferation during the progression of regeneration and homeostasis. Moreover, we find that the ck1α RNAi animals exhibit expansion of the midline marker slit. The eye deficiency induced by slit RNAi can be rescued by ck1α and slit double RNAi. These results suggest that ck1α is required for the medial tissue regeneration and maintenance in planarian Dugesia japonica by regulating the expression of slit, which helps to further investigate the regulation of planarian mediolateral axis.


Assuntos
Planárias , Animais , Planárias/genética , Planárias/metabolismo , Homeostase/fisiologia , Diferenciação Celular
4.
Biochem Biophys Res Commun ; 643: 8-15, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36584589

RESUMO

Regulators of adult neurogenesis are crucial targets for neuronal repair. Freshwater planarians are ideal model systems for studying neuronal regeneration as they can regenerate their entire central nervous system (CNS) using pluripotent adult stem cells. Here, we identified Djfoxk1 in planarian Dugesia japonica to be required for planarian CNS regeneration. Knockdown of Djfoxk1 inhibits the regeneration of the cephalic ganglia, resulting in the failure of eye regeneration. By RNAi screening of Djfoxk1 downstream genes, we identified Djsnon as another regulator of planarian neuronal regeneration. Inhibition of Djsnon with RNA interference (RNAi) results in similar phenotypes caused by Djfoxk1 RNAi without affecting cell proliferation and wound healing. Our findings show that Djsnon as a downstream gene of Djfoxk1 regulates the regeneration of the planarian CNS.


Assuntos
Planárias , Células-Tronco Pluripotentes , Animais , Planárias/genética , Sistema Nervoso Central/fisiologia , Neurônios , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...